view docs/manual/x242.html @ 418:3832a68d83ef

Fix internal compiler error on "var2 = var1 + 1" patterns This appears to be the correct fix. It was provided by Tormod Volden (debian.tormod@gmail.com). The final commit is substantially different from Tormod's submission mostly due to housecleaning (removing the old patches and updating the README). Tormod's comments follow. The original addhi_mem_1 "insn" instruction pattern /matches/ two memory operands, just with the /constraint/ that these are the same location. A pattern match tells the compiler "you should be able to use this, but you might have to work on it to meet the constraints". For typical constraints on registers the compiler can add "reloads", moving stuff between registers or from memory, until the constraints are met and the instruction can be used. However, in this case, no amount of reloads can make two memory locations the same if they already weren't, so the compiler breaks down and cries "unable to generate reloads". It seems this issue only appears if optimization is enabled. The proof is in gcc's reload.c and is left as an exercise to the reader. Limiting the matching pattern to identical memory operands avoids these situations, while allowing the common "var++" cases. References: The pattern/constraints difference is explained in https://gcc.gnu.org/onlinedocs/gccint/Simple-Constraints.html#index-other-register-constraints-3335
author William Astle <lost@l-w.ca>
date Tue, 29 Mar 2016 21:21:49 -0600
parents fc166b3bbae3
children
line wrap: on
line source

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd">
<HTML
><HEAD
><TITLE
>Numbers and Expressions</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK
REL="HOME"
TITLE="LW Tool Chain"
HREF="index.html"><LINK
REL="UP"
TITLE="LWASM"
HREF="c62.html"><LINK
REL="PREVIOUS"
TITLE="Symbols"
HREF="x237.html"><LINK
REL="NEXT"
TITLE="Assembler Directives"
HREF="x250.html"></HEAD
><BODY
CLASS="SECTION"
BGCOLOR="#FFFFFF"
TEXT="#000000"
LINK="#0000FF"
VLINK="#840084"
ALINK="#0000FF"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="3"
ALIGN="center"
>LW Tool Chain</TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="bottom"
><A
HREF="x237.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="80%"
ALIGN="center"
VALIGN="bottom"
>Chapter 3. LWASM</TD
><TD
WIDTH="10%"
ALIGN="right"
VALIGN="bottom"
><A
HREF="x250.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECTION"
><H1
CLASS="SECTION"
><A
NAME="AEN242"
>3.5. Numbers and Expressions</A
></H1
><P
>&#13;Numbers can be expressed in binary, octal, decimal, or hexadecimal. Binary
numbers may be prefixed with a "%" symbol or suffixed with a "b" or "B".
Octal numbers may be prefixed with "@" or suffixed with "Q", "q", "O", or
"o". Hexadecimal numbers may be prefixed with "$", "0x" or "0X", or suffixed
with "H". No prefix or suffix is required for decimal numbers but they can
be prefixed with "&amp;" if desired. Any constant which begins with a letter
must be expressed with the correct prefix base identifier or be prefixed
with a 0. Thus hexadecimal FF would have to be written either 0FFH or $FF.
Numbers are not case sensitive.&#13;</P
><P
> A symbol may appear at any point where a number is acceptable. The
special symbol "*" can be used to represent the starting address of the
current source line within expressions. </P
><P
>The ASCII value of a character can be included by prefixing it with a
single quote ('). The ASCII values of two characters can be included by
prefixing the characters with a quote (").</P
><P
>&#13;LWASM supports the following basic binary operators: +, -, *, /, and %. 
These represent addition, subtraction, multiplication, division, and
modulus.  It also supports unary negation and unary 1's complement (- and ^
respectively).  It is also possible to use ~ for the unary 1's complement
operator.  For completeness, a unary positive (+) is supported though it is
a no-op.  LWASM also supports using |, &#38;, and ^ for bitwise or, bitwise and,
and bitwise exclusive or respectively.&#13;</P
><P
>&#13;Operator precedence follows the usual rules. Multiplication, division, and
modulus take precedence over addition and subtraction.  Unary operators take
precedence over binary operators.  Bitwise operators are lower precdence
than addition and subtraction.  To force a specific order of evaluation,
parentheses can be used in the usual manner.&#13;</P
><P
>&#13;As of LWASM 2.5, the operators &#38;&#38; and || are recognized for boolean and and
boolean or respectively.  They will return either 0 or 1 (false or true). 
They have the lowest precedence of all the binary operators.&#13;</P
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="x237.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="index.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="x250.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>Symbols</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="c62.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>Assembler Directives</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>