comparison doc/manual/manual.html @ 285:9010796c6253 2.3 2.3.1

Generated manual for distribution
author lost
date Fri, 24 Apr 2009 22:36:09 +0000
parents
children
comparison
equal deleted inserted replaced
284:a175fa4a0a9a 285:9010796c6253
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd">
2 <HTML
3 ><HEAD
4 ><TITLE
5 >LW Tool Chain</TITLE
6 ><META
7 NAME="GENERATOR"
8 CONTENT="Modular DocBook HTML Stylesheet Version 1.79"></HEAD
9 ><BODY
10 CLASS="BOOK"
11 BGCOLOR="#FFFFFF"
12 TEXT="#000000"
13 LINK="#0000FF"
14 VLINK="#840084"
15 ALINK="#0000FF"
16 ><DIV
17 CLASS="BOOK"
18 ><A
19 NAME="AEN1"
20 ></A
21 ><DIV
22 CLASS="TITLEPAGE"
23 ><H1
24 CLASS="TITLE"
25 ><A
26 NAME="AEN2"
27 >LW Tool Chain</A
28 ></H1
29 ><H3
30 CLASS="AUTHOR"
31 ><A
32 NAME="AEN4"
33 ></A
34 >William Astle</H3
35 ><P
36 CLASS="COPYRIGHT"
37 >Copyright &copy; 2009 William Astle</P
38 ><HR></DIV
39 ><DIV
40 CLASS="TOC"
41 ><DL
42 ><DT
43 ><B
44 >Table of Contents</B
45 ></DT
46 ><DT
47 >1. <A
48 HREF="#AEN10"
49 >Introduction</A
50 ></DT
51 ><DD
52 ><DL
53 ><DT
54 >1.1. <A
55 HREF="#AEN13"
56 >History</A
57 ></DT
58 ></DL
59 ></DD
60 ><DT
61 >2. <A
62 HREF="#AEN18"
63 >Output Formats</A
64 ></DT
65 ><DD
66 ><DL
67 ><DT
68 >2.1. <A
69 HREF="#AEN21"
70 >Raw Binaries</A
71 ></DT
72 ><DT
73 >2.2. <A
74 HREF="#AEN24"
75 >DECB Binaries</A
76 ></DT
77 ><DT
78 >2.3. <A
79 HREF="#AEN29"
80 >Object Files</A
81 ></DT
82 ></DL
83 ></DD
84 ><DT
85 >3. <A
86 HREF="#AEN35"
87 >LWASM</A
88 ></DT
89 ><DD
90 ><DL
91 ><DT
92 >3.1. <A
93 HREF="#AEN38"
94 >Command Line Options</A
95 ></DT
96 ><DT
97 >3.2. <A
98 HREF="#AEN121"
99 >Dialects</A
100 ></DT
101 ><DT
102 >3.3. <A
103 HREF="#AEN126"
104 >Source Format</A
105 ></DT
106 ><DT
107 >3.4. <A
108 HREF="#AEN135"
109 >Symbols</A
110 ></DT
111 ><DT
112 >3.5. <A
113 HREF="#AEN139"
114 >Numbers and Expressions</A
115 ></DT
116 ><DT
117 >3.6. <A
118 HREF="#AEN146"
119 >Assembler Directives</A
120 ></DT
121 ><DD
122 ><DL
123 ><DT
124 >3.6.1. <A
125 HREF="#AEN149"
126 >Data Directives</A
127 ></DT
128 ><DT
129 >3.6.2. <A
130 HREF="#AEN243"
131 >Address Definition</A
132 ></DT
133 ><DT
134 >3.6.3. <A
135 HREF="#AEN285"
136 >Conditional Assembly</A
137 ></DT
138 ><DT
139 >3.6.4. <A
140 HREF="#AEN349"
141 >Miscelaneous Directives</A
142 ></DT
143 ></DL
144 ></DD
145 ><DT
146 >3.7. <A
147 HREF="#AEN378"
148 >Macros</A
149 ></DT
150 ><DT
151 >3.8. <A
152 HREF="#AEN400"
153 >Object Files and Sections</A
154 ></DT
155 ><DT
156 >3.9. <A
157 HREF="#AEN458"
158 >Assembler Modes and Pragmas</A
159 ></DT
160 ></DL
161 ></DD
162 ><DT
163 >4. <A
164 HREF="#AEN491"
165 >LWLINK</A
166 ></DT
167 ><DD
168 ><DL
169 ><DT
170 >4.1. <A
171 HREF="#AEN494"
172 >Command Line Options</A
173 ></DT
174 ><DT
175 >4.2. <A
176 HREF="#AEN591"
177 >Linker Operation</A
178 ></DT
179 ><DT
180 >4.3. <A
181 HREF="#AEN605"
182 >Linking Scripts</A
183 ></DT
184 ></DL
185 ></DD
186 ><DT
187 >5. <A
188 HREF="#AEN639"
189 >Libraries and LWAR</A
190 ></DT
191 ><DD
192 ><DL
193 ><DT
194 >5.1. <A
195 HREF="#AEN643"
196 >Command Line Options</A
197 ></DT
198 ></DL
199 ></DD
200 ><DT
201 >6. <A
202 HREF="#OBJCHAP"
203 >Object Files</A
204 ></DT
205 ></DL
206 ></DIV
207 ><DIV
208 CLASS="LOT"
209 ><DL
210 CLASS="LOT"
211 ><DT
212 ><B
213 >List of Tables</B
214 ></DT
215 ><DT
216 >6-1. <A
217 HREF="#AEN726"
218 >Object File Term Types</A
219 ></DT
220 ><DT
221 >6-2. <A
222 HREF="#AEN753"
223 >Object File Operator Numbers</A
224 ></DT
225 ></DL
226 ></DIV
227 ><DIV
228 CLASS="CHAPTER"
229 ><HR><H1
230 ><A
231 NAME="AEN10"
232 ></A
233 >Chapter 1. Introduction</H1
234 ><P
235 >The LW tool chain provides utilities for building binaries for MC6809 and
236 HD6309 CPUs. The tool chain includes a cross-assembler and a cross-linker
237 which support several styles of output.</P
238 ><DIV
239 CLASS="SECTION"
240 ><HR><H2
241 CLASS="SECTION"
242 ><A
243 NAME="AEN13"
244 >1.1. History</A
245 ></H2
246 ><P
247 >For a long time, I have had an interest in creating an operating system for
248 the Coco3. I finally started working on that project around the beginning of
249 2006. I had a number of assemblers I could choose from. Eventually, I settled
250 on one and started tinkering. After a while, I realized that assembler was not
251 going to be sufficient due to lack of macros and issues with forward references.
252 Then I tried another which handled forward references correctly but still did
253 not support macros. I looked around at other assemblers and they all lacked
254 one feature or another that I really wanted for creating my operating system.</P
255 ><P
256 >The solution seemed clear at that point. I am a fair programmer so I figured
257 I could write an assembler that would do everything I wanted an assembler to
258 do. Thus the LWASM probject was born. After more than two years of on and off
259 work, version 1.0 of LWASM was released in October of 2008.</P
260 ><P
261 >As the aforementioned operating system project progressed further, it became
262 clear that while assembling the whole project through a single file was doable,
263 it was not practical. When I found myself playing some fancy games with macros
264 in a bid to simulate sections, I realized I needed a means of assembling
265 source files separately and linking them later. This spawned a major development
266 effort to add an object file support to LWASM. It also spawned the LWLINK
267 project to provide a means to actually link the files.</P
268 ></DIV
269 ></DIV
270 ><DIV
271 CLASS="CHAPTER"
272 ><HR><H1
273 ><A
274 NAME="AEN18"
275 ></A
276 >Chapter 2. Output Formats</H1
277 ><P
278 >The LW tool chain supports multiple output formats. Each format has its
279 advantages and disadvantages. Each format is described below.</P
280 ><DIV
281 CLASS="SECTION"
282 ><HR><H2
283 CLASS="SECTION"
284 ><A
285 NAME="AEN21"
286 >2.1. Raw Binaries</A
287 ></H2
288 ><P
289 >A raw binary is simply a string of bytes. There are no headers or other
290 niceties. Both LWLINK and LWASM support generating raw binaries. ORG directives
291 in the source code only serve to set the addresses that will be used for
292 symbols but otherwise have no direct impact on the resulting binary.</P
293 ></DIV
294 ><DIV
295 CLASS="SECTION"
296 ><HR><H2
297 CLASS="SECTION"
298 ><A
299 NAME="AEN24"
300 >2.2. DECB Binaries</A
301 ></H2
302 ><P
303 >A DECB binary is compatible with the LOADM command in Disk Extended
304 Color Basic on the CoCo. They are also compatible with CLOADM from Extended
305 Color Basic. These binaries include the load address of the binary as well
306 as encoding an execution address. These binaries may contain multiple loadable
307 sections, each of which has its own load address.</P
308 ><P
309 >Each binary starts with a preamble. Each preamble is five bytes long. The
310 first byte is zero. The next two bytes specify the number of bytes to load
311 and the last two bytes specify the address to load the bytes at. Then, a
312 string of bytes follows. After this string of bytes, there may be another
313 preamble or a postamble. A postamble is also five bytes in length. The first
314 byte of the postamble is $FF, the next two are zero, and the last two are
315 the execution address for the binary.</P
316 ><P
317 >Both LWASM and LWLINK can output this format.</P
318 ></DIV
319 ><DIV
320 CLASS="SECTION"
321 ><HR><H2
322 CLASS="SECTION"
323 ><A
324 NAME="AEN29"
325 >2.3. Object Files</A
326 ></H2
327 ><P
328 >LWASM supports generating a proprietary object file format which is
329 described in <A
330 HREF="#OBJCHAP"
331 >Chapter 6</A
332 >. LWLINK is then used to link these
333 object files into a final binary in any of LWLINK's supported binary
334 formats.</P
335 ><P
336 >Object files are very flexible in that they allow references that are not
337 known at assembly time to be resolved at link time. However, because the
338 addresses of such references are not known, there is no way for the assembler
339 has to use sixteen bit addressing modes for these references. The linker
340 will always use sixteen bits when resolving a reference which means any
341 instruction that requires an eight bit operand cannot use external references.</P
342 ><P
343 >Object files also support the concept of sections which are not valid
344 for other output types. This allows related code from each object file
345 linked to be collapsed together in the final binary.</P
346 ></DIV
347 ></DIV
348 ><DIV
349 CLASS="CHAPTER"
350 ><HR><H1
351 ><A
352 NAME="AEN35"
353 ></A
354 >Chapter 3. LWASM</H1
355 ><P
356 >The LWTOOLS assembler is called LWASM. This chapter documents the various
357 features of the assembler. It is not, however, a tutorial on 6x09 assembly
358 language programming.</P
359 ><DIV
360 CLASS="SECTION"
361 ><HR><H2
362 CLASS="SECTION"
363 ><A
364 NAME="AEN38"
365 >3.1. Command Line Options</A
366 ></H2
367 ><P
368 >The binary for LWASM is called "lwasm". Note that the binary is in lower
369 case. lwasm takes the following command line arguments.</P
370 ><P
371 ></P
372 ><DIV
373 CLASS="VARIABLELIST"
374 ><DL
375 ><DT
376 ><CODE
377 CLASS="OPTION"
378 >--decb</CODE
379 >, <CODE
380 CLASS="OPTION"
381 >-b</CODE
382 ></DT
383 ><DD
384 ><P
385 >Select the DECB output format target. Equivalent to <CODE
386 CLASS="OPTION"
387 >--format=decb</CODE
388 >.</P
389 ></DD
390 ><DT
391 ><CODE
392 CLASS="OPTION"
393 >--format=type</CODE
394 >, <CODE
395 CLASS="OPTION"
396 >-f type</CODE
397 ></DT
398 ><DD
399 ><P
400 >Select the output format. Valid values are <CODE
401 CLASS="OPTION"
402 >obj</CODE
403 > for the object
404 file target, <CODE
405 CLASS="OPTION"
406 >decb</CODE
407 > for the DECB LOADM format, and <CODE
408 CLASS="OPTION"
409 >raw</CODE
410 >
411 for a raw binary.</P
412 ></DD
413 ><DT
414 ><CODE
415 CLASS="OPTION"
416 >--list[=file]</CODE
417 >, <CODE
418 CLASS="OPTION"
419 >-l[file]</CODE
420 ></DT
421 ><DD
422 ><P
423 >Cause LWASM to generate a listing. If <CODE
424 CLASS="OPTION"
425 >file</CODE
426 > is specified,
427 the listing will go to that file. Otherwise it will go to the standard output
428 stream. By default, no listing is generated.</P
429 ></DD
430 ><DT
431 ><CODE
432 CLASS="OPTION"
433 >--obj</CODE
434 ></DT
435 ><DD
436 ><P
437 >Select the proprietary object file format as the output target.</P
438 ></DD
439 ><DT
440 ><CODE
441 CLASS="OPTION"
442 >--output=FILE</CODE
443 >, <CODE
444 CLASS="OPTION"
445 >-o FILE</CODE
446 ></DT
447 ><DD
448 ><P
449 >This option specifies the name of the output file. If not specified, the
450 default is <CODE
451 CLASS="OPTION"
452 >a.out</CODE
453 >.</P
454 ></DD
455 ><DT
456 ><CODE
457 CLASS="OPTION"
458 >--pragma=pragma</CODE
459 >, <CODE
460 CLASS="OPTION"
461 >-p pragma</CODE
462 ></DT
463 ><DD
464 ><P
465 >Specify assembler pragmas. Multiple pragmas are separated by commas. The
466 pragmas accepted are the same as for the PRAGMA assembler directive described
467 below.</P
468 ></DD
469 ><DT
470 ><CODE
471 CLASS="OPTION"
472 >--raw</CODE
473 >, <CODE
474 CLASS="OPTION"
475 >-r</CODE
476 ></DT
477 ><DD
478 ><P
479 >Select raw binary as the output target.</P
480 ></DD
481 ><DT
482 ><CODE
483 CLASS="OPTION"
484 >--help</CODE
485 >, <CODE
486 CLASS="OPTION"
487 >-?</CODE
488 ></DT
489 ><DD
490 ><P
491 >Present a help screen describing the command line options.</P
492 ></DD
493 ><DT
494 ><CODE
495 CLASS="OPTION"
496 >--usage</CODE
497 ></DT
498 ><DD
499 ><P
500 >Provide a summary of the command line options.</P
501 ></DD
502 ><DT
503 ><CODE
504 CLASS="OPTION"
505 >--version</CODE
506 >, <CODE
507 CLASS="OPTION"
508 >-V</CODE
509 ></DT
510 ><DD
511 ><P
512 >Display the software version.</P
513 ></DD
514 ><DT
515 ><CODE
516 CLASS="OPTION"
517 >--debug</CODE
518 >, <CODE
519 CLASS="OPTION"
520 >-d</CODE
521 ></DT
522 ><DD
523 ><P
524 >Increase the debugging level. Only really useful to people hacking on the
525 LWASM source code itself.</P
526 ></DD
527 ></DL
528 ></DIV
529 ></DIV
530 ><DIV
531 CLASS="SECTION"
532 ><HR><H2
533 CLASS="SECTION"
534 ><A
535 NAME="AEN121"
536 >3.2. Dialects</A
537 ></H2
538 ><P
539 >LWASM supports all documented MC6809 instructions as defined by Motorola.
540 It also supports all known HD6309 instructions. There is some variation,
541 however, in the pneumonics used for the block transfer instructions. LWASM
542 uses TFM for all four of them as do several other assemblers. Others, such
543 as CCASM, use four separate opcodes for it (compare: copy+, copy-, implode,
544 and explode). There are advantages to both methods. However, it seems like
545 TFM has the most traction and thus, this is what LWASM supports. Support
546 for such variations may be added in the future.</P
547 ><P
548 >The standard addressing mode specifiers are supported. These are the
549 hash sign ("#") for immediate mode, the less than sign ("&lt;") for forced
550 eight bit modes, and the greater than sign ("&gt;") for forced sixteen bit modes.</P
551 ><P
552 >Additionally, LWASM supports using the asterisk ("*") to indicate
553 base page addressing. This should not be used in hand-written source code,
554 however, because it is non-standard and may or may not be present in future
555 versions of LWASM.</P
556 ></DIV
557 ><DIV
558 CLASS="SECTION"
559 ><HR><H2
560 CLASS="SECTION"
561 ><A
562 NAME="AEN126"
563 >3.3. Source Format</A
564 ></H2
565 ><P
566 >LWASM accepts plain text files in a relatively free form. It can handle
567 lines terminated with CR, LF, CRLF, or LFCR which means it should be able
568 to assemble files on any platform on which it compiles.</P
569 ><P
570 >Each line may start with a symbol. If a symbol is present, there must not
571 be any whitespace preceding it. It is legal for a line to contain nothing
572 but a symbol.</P
573 ><P
574 >The op code is separated from the symbol by whitespace. If there is
575 no symbol, there must be at least one white space character preceding it.
576 If applicable, the operand follows separated by whitespace. Following the
577 opcode and operand is an optional comment.</P
578 ><P
579 >A comment can also be introduced with a * or a ;. The comment character is
580 optional for end of statement comments. However, if a symbol is the only
581 thing present on the line other than the comment, the comment character is
582 mandatory to prevent the assembler from interpreting the comment as an opcode.</P
583 ><P
584 >For compatibility with the output generated by some C preprocessors, LWASM
585 will also ignore lines that begin with a #. This should not be used as a general
586 comment character, however.</P
587 ><P
588 >The opcode is not treated case sensitively. Neither are register names in
589 the operand fields. Symbols, however, are case sensitive.</P
590 ><P
591 >LWASM does not support line numbers in the file.</P
592 ></DIV
593 ><DIV
594 CLASS="SECTION"
595 ><HR><H2
596 CLASS="SECTION"
597 ><A
598 NAME="AEN135"
599 >3.4. Symbols</A
600 ></H2
601 ><P
602 >Symbols have no length restriction. They may contain letters, numbers, dots,
603 dollar signs, and underscores. They must start with a letter, dot, or
604 underscore.</P
605 ><P
606 >LWASM also supports the concept of a local symbol. A local symbol is one
607 which contains either a "?" or a "@", which can appear anywhere in the symbol.
608 The scope of a local symbol is determined by a number of factors. First,
609 each included file gets its own local symbol scope. A blank line will also
610 be considered a local scope barrier. Macros each have their own local symbol
611 scope as well (which has a side effect that you cannot use a local symbol
612 as an argument to a macro). There are other factors as well. In general,
613 a local symbol is restricted to the block of code it is defined within.</P
614 ></DIV
615 ><DIV
616 CLASS="SECTION"
617 ><HR><H2
618 CLASS="SECTION"
619 ><A
620 NAME="AEN139"
621 >3.5. Numbers and Expressions</A
622 ></H2
623 ><P
624 >&#13;Numbers can be expressed in binary, octal, decimal, or hexadecimal. Binary
625 numbers may be prefixed with a "%" symbol or suffixed with a "b" or "B".
626 Octal numbers may be prefixed with "@" or suffixed with "Q", "q", "O", or
627 "o". Hexadecimal numbers may be prefixed with "$", "0x" or "0X", or suffixed
628 with "H". No prefix or suffix is required for decimal numbers but they can
629 be prefixed with "&amp;" if desired. Any constant which begins with a letter
630 must be expressed with the correct prefix base identifier or be prefixed
631 with a 0. Thus hexadecimal FF would have to be written either 0FFH or $FF.
632 Numbers are not case sensitive.&#13;</P
633 ><P
634 > A symbol may appear at any point where a number is acceptable. The
635 special symbol "*" can be used to represent the starting address of the
636 current source line within expressions. </P
637 ><P
638 >The ASCII value of a character can be included by prefixing it with a
639 single quote ('). The ASCII values of two characters can be included by
640 prefixing the characters with a quote (").</P
641 ><P
642 >LWASM supports the following basic binary operators: +, -, *, /, and %.
643 These represent addition, subtraction, multiplication, division, and modulus.
644 It also supports unary negation and unary 1's complement (- and ^ respectively).
645 For completeness, a unary positive (+) is supported though it is a no-op.</P
646 ><P
647 >Operator precedence follows the usual rules. multiplication, division,
648 and modulus take precedence over addition and subtraction. Unary operators
649 take precedence over binary operators. To force a specific order of evaluation,
650 parentheses can be used in the usual manner.</P
651 ></DIV
652 ><DIV
653 CLASS="SECTION"
654 ><HR><H2
655 CLASS="SECTION"
656 ><A
657 NAME="AEN146"
658 >3.6. Assembler Directives</A
659 ></H2
660 ><P
661 >Various directives can be used to control the behaviour of the
662 assembler or to include non-code/data in the resulting output. Those directives
663 that are not described in detail in other sections of this document are
664 described below.</P
665 ><DIV
666 CLASS="SECTION"
667 ><HR><H3
668 CLASS="SECTION"
669 ><A
670 NAME="AEN149"
671 >3.6.1. Data Directives</A
672 ></H3
673 ><P
674 ></P
675 ><DIV
676 CLASS="VARIABLELIST"
677 ><DL
678 ><DT
679 >FCB <CODE
680 CLASS="PARAMETER"
681 >expr[,...]</CODE
682 >, .DB <CODE
683 CLASS="PARAMETER"
684 >expr[,...]</CODE
685 >, .BYTE <CODE
686 CLASS="PARAMETER"
687 >expr[,...]</CODE
688 ></DT
689 ><DD
690 ><P
691 >Include one or more constant bytes (separated by commas) in the output.</P
692 ></DD
693 ><DT
694 >FDB <CODE
695 CLASS="PARAMETER"
696 >expr[,...]</CODE
697 >, .DW <CODE
698 CLASS="PARAMETER"
699 >expr[,...]</CODE
700 >, .WORD <CODE
701 CLASS="PARAMETER"
702 >expr[,...]</CODE
703 ></DT
704 ><DD
705 ><P
706 >Include one or more words (separated by commas) in the output.</P
707 ></DD
708 ><DT
709 >FQB <CODE
710 CLASS="PARAMETER"
711 >expr[,...]</CODE
712 >, .QUAD <CODE
713 CLASS="PARAMETER"
714 >expr[,...]</CODE
715 >, .4BYTE <CODE
716 CLASS="PARAMETER"
717 >expr[,...]</CODE
718 ></DT
719 ><DD
720 ><P
721 >Include one or more double words (separated by commas) in the output.</P
722 ></DD
723 ><DT
724 >FCC <CODE
725 CLASS="PARAMETER"
726 >string</CODE
727 >, .ASCII <CODE
728 CLASS="PARAMETER"
729 >string</CODE
730 >, .STR <CODE
731 CLASS="PARAMETER"
732 >string</CODE
733 ></DT
734 ><DD
735 ><P
736 >Include a string of text in the output. The first character of the operand
737 is the delimiter which must appear as the last character and cannot appear
738 within the string. The string is included with no modifications&#62;</P
739 ></DD
740 ><DT
741 >FCN <CODE
742 CLASS="PARAMETER"
743 >string</CODE
744 >, .ASCIZ <CODE
745 CLASS="PARAMETER"
746 >string</CODE
747 >, .STRZ <CODE
748 CLASS="PARAMETER"
749 >string</CODE
750 ></DT
751 ><DD
752 ><P
753 >Include a NUL terminated string of text in the output. The first character of
754 the operand is the delimiter which must appear as the last character and
755 cannot appear within the string. A NUL byte is automatically appended to
756 the string.</P
757 ></DD
758 ><DT
759 >FCS <CODE
760 CLASS="PARAMETER"
761 >string</CODE
762 >, .ASCIS <CODE
763 CLASS="PARAMETER"
764 >string</CODE
765 >, .STRS <CODE
766 CLASS="PARAMETER"
767 >string</CODE
768 ></DT
769 ><DD
770 ><P
771 >Include a string of text in the output with bit 7 of the final byte set. The
772 first character of the operand is the delimiter which must appear as the last
773 character and cannot appear within the string.</P
774 ></DD
775 ><DT
776 >ZMB <CODE
777 CLASS="PARAMETER"
778 >expr</CODE
779 ></DT
780 ><DD
781 ><P
782 >Include a number of NUL bytes in the output. The number must be fully resolvable
783 during pass 1 of assembly so no forward or external references are permitted.</P
784 ></DD
785 ><DT
786 >ZMD <CODE
787 CLASS="PARAMETER"
788 >expr</CODE
789 ></DT
790 ><DD
791 ><P
792 >Include a number of zero words in the output. The number must be fully
793 resolvable during pass 1 of assembly so no forward or external references are
794 permitted.</P
795 ></DD
796 ><DT
797 >ZMQ <CODE
798 CLASS="PARAMETER"
799 >expr<CODE
800 CLASS="PARAMETER"
801 ></CODE
802 ></CODE
803 ></DT
804 ><DD
805 ><P
806 >Include a number of zero double-words in the output. The number must be fully
807 resolvable during pass 1 of assembly so no forward or external references are
808 permitted.</P
809 ></DD
810 ><DT
811 >RMB <CODE
812 CLASS="PARAMETER"
813 >expr</CODE
814 >, .BLKB <CODE
815 CLASS="PARAMETER"
816 >expr</CODE
817 >, .DS <CODE
818 CLASS="PARAMETER"
819 >expr</CODE
820 >, .RS <CODE
821 CLASS="PARAMETER"
822 >expr</CODE
823 ></DT
824 ><DD
825 ><P
826 >Reserve a number of bytes in the output. The number must be fully resolvable
827 during pass 1 of assembly so no forward or external references are permitted.
828 The value of the bytes is undefined.</P
829 ></DD
830 ><DT
831 >RMD <CODE
832 CLASS="PARAMETER"
833 >expr</CODE
834 ></DT
835 ><DD
836 ><P
837 >Reserve a number of words in the output. The number must be fully
838 resolvable during pass 1 of assembly so no forward or external references are
839 permitted. The value of the words is undefined.</P
840 ></DD
841 ><DT
842 >RMQ <CODE
843 CLASS="PARAMETER"
844 >expr</CODE
845 ></DT
846 ><DD
847 ><P
848 >Reserve a number of double-words in the output. The number must be fully
849 resolvable during pass 1 of assembly so no forward or external references are
850 permitted. The value of the double-words is undefined.</P
851 ></DD
852 ></DL
853 ></DIV
854 ></DIV
855 ><DIV
856 CLASS="SECTION"
857 ><HR><H3
858 CLASS="SECTION"
859 ><A
860 NAME="AEN243"
861 >3.6.2. Address Definition</A
862 ></H3
863 ><P
864 >The directives in this section all control the addresses of symbols
865 or the assembly process itself.</P
866 ><P
867 ></P
868 ><DIV
869 CLASS="VARIABLELIST"
870 ><DL
871 ><DT
872 >ORG <CODE
873 CLASS="PARAMETER"
874 >expr</CODE
875 ></DT
876 ><DD
877 ><P
878 >Set the assembly address. The address must be fully resolvable on the
879 first pass so no external or forward references are permitted. ORG is not
880 permitted within sections when outputting to object files. For the DECB
881 target, each ORG directive after which output is generated will cause
882 a new preamble to be output. ORG is only used to determine the addresses
883 of symbols when the raw target is used.</P
884 ></DD
885 ><DT
886 ><CODE
887 CLASS="PARAMETER"
888 >sym</CODE
889 > EQU <CODE
890 CLASS="PARAMETER"
891 >expr</CODE
892 >, <CODE
893 CLASS="PARAMETER"
894 >sym</CODE
895 > = <CODE
896 CLASS="PARAMETER"
897 >expr</CODE
898 ></DT
899 ><DD
900 ><P
901 >Define the value of <CODE
902 CLASS="PARAMETER"
903 >sym</CODE
904 > to be <CODE
905 CLASS="PARAMETER"
906 >expr</CODE
907 >.</P
908 ></DD
909 ><DT
910 ><CODE
911 CLASS="PARAMETER"
912 >sym</CODE
913 > SET <CODE
914 CLASS="PARAMETER"
915 >expr</CODE
916 ></DT
917 ><DD
918 ><P
919 >Define the value of <CODE
920 CLASS="PARAMETER"
921 >sym</CODE
922 > to be <CODE
923 CLASS="PARAMETER"
924 >expr</CODE
925 >.
926 Unlike EQU, SET permits symbols to be defined multiple times as long as SET
927 is used for all instances. Use of the symbol before the first SET statement
928 that sets its value is undefined.</P
929 ></DD
930 ><DT
931 >SETDP <CODE
932 CLASS="PARAMETER"
933 >expr</CODE
934 ></DT
935 ><DD
936 ><P
937 >Inform the assembler that it can assume the DP register contains
938 <CODE
939 CLASS="PARAMETER"
940 >expr</CODE
941 >. This directive is only advice to the assembler
942 to determine whether an address is in the direct page and has no effect
943 on the contents of the DP register. The value must be fully resolved during
944 the first assembly pass because it affects the sizes of subsequent instructions.</P
945 ><P
946 >This directive has no effect in the object file target.</P
947 ></DD
948 ><DT
949 >ALIGN <CODE
950 CLASS="PARAMETER"
951 >expr</CODE
952 ></DT
953 ><DD
954 ><P
955 >Force the current assembly address to be a multiple of <CODE
956 CLASS="PARAMETER"
957 >expr</CODE
958 >.
959 A series of NUL bytes is output to force the alignment, if required. The
960 alignment value must be fully resolved on the first pass because it affects
961 the addresses of subsquent instructions.</P
962 ><P
963 >This directive is not suitable for inclusion in the middle of actual
964 code. It is intended to appear where the bytes output will not be executed.</P
965 ></DD
966 ></DL
967 ></DIV
968 ></DIV
969 ><DIV
970 CLASS="SECTION"
971 ><HR><H3
972 CLASS="SECTION"
973 ><A
974 NAME="AEN285"
975 >3.6.3. Conditional Assembly</A
976 ></H3
977 ><P
978 >Portions of the source code can be excluded or included based on conditions
979 known at assembly time. Conditionals can be nested arbitrarily deeply. The
980 directives associated with conditional assembly are described in this section.</P
981 ><P
982 >All conditionals must be fully bracketed. That is, every conditional
983 statement must eventually be followed by an ENDC at the same level of nesting.</P
984 ><P
985 >Conditional expressions are only evaluated on the first assembly pass.
986 It is not possible to game the assembly process by having a conditional
987 change its value between assembly passes. Thus there is not and never will
988 be any equivalent of IFP1 or IFP2 as provided by other assemblers.</P
989 ><P
990 ></P
991 ><DIV
992 CLASS="VARIABLELIST"
993 ><DL
994 ><DT
995 >IFEQ <CODE
996 CLASS="PARAMETER"
997 >expr</CODE
998 ></DT
999 ><DD
1000 ><P
1001 >If <CODE
1002 CLASS="PARAMETER"
1003 >expr</CODE
1004 > evaluates to zero, the conditional
1005 will be considered true.</P
1006 ></DD
1007 ><DT
1008 >IFNE <CODE
1009 CLASS="PARAMETER"
1010 >expr</CODE
1011 >, IF <CODE
1012 CLASS="PARAMETER"
1013 >expr</CODE
1014 ></DT
1015 ><DD
1016 ><P
1017 >If <CODE
1018 CLASS="PARAMETER"
1019 >expr</CODE
1020 > evaluates to a non-zero value, the conditional
1021 will be considered true.</P
1022 ></DD
1023 ><DT
1024 >IFGT <CODE
1025 CLASS="PARAMETER"
1026 >expr</CODE
1027 ></DT
1028 ><DD
1029 ><P
1030 >If <CODE
1031 CLASS="PARAMETER"
1032 >expr</CODE
1033 > evaluates to a value greater than zero, the conditional
1034 will be considered true.</P
1035 ></DD
1036 ><DT
1037 >IFGE <CODE
1038 CLASS="PARAMETER"
1039 >expr</CODE
1040 ></DT
1041 ><DD
1042 ><P
1043 >If <CODE
1044 CLASS="PARAMETER"
1045 >expr</CODE
1046 > evaluates to a value greater than or equal to zero, the conditional
1047 will be considered true.</P
1048 ></DD
1049 ><DT
1050 >IFLT <CODE
1051 CLASS="PARAMETER"
1052 >expr</CODE
1053 ></DT
1054 ><DD
1055 ><P
1056 >If <CODE
1057 CLASS="PARAMETER"
1058 >expr</CODE
1059 > evaluates to a value less than zero, the conditional
1060 will be considered true.</P
1061 ></DD
1062 ><DT
1063 >IFLE <CODE
1064 CLASS="PARAMETER"
1065 >expr</CODE
1066 ></DT
1067 ><DD
1068 ><P
1069 >If <CODE
1070 CLASS="PARAMETER"
1071 >expr</CODE
1072 > evaluates to a value less than or equal to zero , the conditional
1073 will be considered true.</P
1074 ></DD
1075 ><DT
1076 >IFDEF <CODE
1077 CLASS="PARAMETER"
1078 >sym</CODE
1079 ></DT
1080 ><DD
1081 ><P
1082 >If <CODE
1083 CLASS="PARAMETER"
1084 >sym</CODE
1085 > is defined at this point in the assembly
1086 process, the conditional
1087 will be considered true.</P
1088 ></DD
1089 ><DT
1090 >IFNDEF <CODE
1091 CLASS="PARAMETER"
1092 >sym</CODE
1093 ></DT
1094 ><DD
1095 ><P
1096 >If <CODE
1097 CLASS="PARAMETER"
1098 >sym</CODE
1099 > is not defined at this point in the assembly
1100 process, the conditional
1101 will be considered true.</P
1102 ></DD
1103 ><DT
1104 >ELSE</DT
1105 ><DD
1106 ><P
1107 >If the preceding conditional at the same level of nesting was false, the
1108 statements following will be assembled. If the preceding conditional at
1109 the same level was true, the statements following will not be assembled.
1110 Note that the preceding conditional might have been another ELSE statement
1111 although this behaviour is not guaranteed to be supported in future versions
1112 of LWASM.</P
1113 ></DD
1114 ><DT
1115 >ENDC</DT
1116 ><DD
1117 ><P
1118 >This directive marks the end of a conditional construct. Every conditional
1119 construct must end with an ENDC directive.</P
1120 ></DD
1121 ></DL
1122 ></DIV
1123 ></DIV
1124 ><DIV
1125 CLASS="SECTION"
1126 ><HR><H3
1127 CLASS="SECTION"
1128 ><A
1129 NAME="AEN349"
1130 >3.6.4. Miscelaneous Directives</A
1131 ></H3
1132 ><P
1133 >This section includes directives that do not fit into the other
1134 categories.</P
1135 ><P
1136 ></P
1137 ><DIV
1138 CLASS="VARIABLELIST"
1139 ><DL
1140 ><DT
1141 >INCLUDE <CODE
1142 CLASS="PARAMETER"
1143 >filename</CODE
1144 ></DT
1145 ><DD
1146 ><P
1147 >Include the contents of <CODE
1148 CLASS="PARAMETER"
1149 >filename</CODE
1150 > at this point in
1151 the assembly as though it were a part of the file currently being processed.
1152 Note that whitespace cannot appear in the name of the file.</P
1153 ></DD
1154 ><DT
1155 >END <CODE
1156 CLASS="PARAMETER"
1157 >[expr]</CODE
1158 ></DT
1159 ><DD
1160 ><P
1161 >This directive causes the assembler to stop assembling immediately as though
1162 it ran out of input. For the DECB target only, <CODE
1163 CLASS="PARAMETER"
1164 >expr</CODE
1165 >
1166 can be used to set the execution address of the resulting binary. For all
1167 other targets, specifying <CODE
1168 CLASS="PARAMETER"
1169 >expr</CODE
1170 > will cause an error.</P
1171 ></DD
1172 ><DT
1173 >ERROR <CODE
1174 CLASS="PARAMETER"
1175 >string</CODE
1176 ></DT
1177 ><DD
1178 ><P
1179 >Causes a custom error message to be printed at this line. This will cause
1180 assembly to fail. This directive is most useful inside conditional constructs
1181 to cause assembly to fail if some condition that is known bad happens.</P
1182 ></DD
1183 ><DT
1184 >.MODULE <CODE
1185 CLASS="PARAMETER"
1186 >string</CODE
1187 ></DT
1188 ><DD
1189 ><P
1190 >This directive is ignored for most output targets. If the output target
1191 supports encoding a module name into it, <CODE
1192 CLASS="PARAMETER"
1193 >string</CODE
1194 >
1195 will be used as the module name.</P
1196 ><P
1197 >As of version 2.2, no supported output targets support this directive.</P
1198 ></DD
1199 ></DL
1200 ></DIV
1201 ></DIV
1202 ></DIV
1203 ><DIV
1204 CLASS="SECTION"
1205 ><HR><H2
1206 CLASS="SECTION"
1207 ><A
1208 NAME="AEN378"
1209 >3.7. Macros</A
1210 ></H2
1211 ><P
1212 >LWASM is a macro assembler. A macro is simply a name that stands in for a
1213 series of instructions. Once a macro is defined, it is used like any other
1214 assembler directive. Defining a macro can be considered equivalent to adding
1215 additional assembler directives.</P
1216 ><P
1217 >Macros my accept parameters. These parameters are referenced within
1218 a macro by the a backslash ("\") followed by a digit 1 through 9 for the first
1219 through ninth parameters. They may also be referenced by enclosing the
1220 decimal parameter number in braces ("{num}"). These parameter references
1221 are replaced with the verbatim text of the parameter passed to the macro. A
1222 reference to a non-existent parameter will be replaced by an empty string.
1223 Macro parameters are expanded everywhere on each source line. That means
1224 the parameter to a macro could be used as a symbol or it could even appear
1225 in a comment or could cause an entire source line to be commented out
1226 when the macro is expanded.</P
1227 ><P
1228 >Parameters passed to a macro are separated by commas and the parameter list
1229 is terminated by any whitespace. This means that neither a comma nor whitespace
1230 may be included in a macro parameter.</P
1231 ><P
1232 >Macro expansion is done recursively. That is, within a macro, macros are
1233 expanded. This can lead to infinite loops in macro expansion. If the assembler
1234 hangs for a long time while assembling a file that uses macros, this may be
1235 the reason.</P
1236 ><P
1237 >Each macro expansion receives its own local symbol context which is not
1238 inherited by any macros called by it nor is it inherited from the context
1239 the macro was instantiated in. That means it is possible to use local symbols
1240 within macros without having them collide with symbols in other macros or
1241 outside the macro itself. However, this also means that using a local symbol
1242 as a parameter to a macro, while legal, will not do what it would seem to do
1243 as it will result in looking up the local symbol in the macro's symbol context
1244 rather than the enclosing context where it came from, likely yielding either
1245 an undefined symbol error or bizarre assembly results.</P
1246 ><P
1247 >Note that there is no way to define a macro as local to a symbol context. All
1248 macros are part of the global macro namespace. However, macros have a separate
1249 namespace from symbols so it is possible to have a symbol with the same name
1250 as a macro.</P
1251 ><P
1252 >Macros are defined only during the first pass. Macro expansion also
1253 only occurs during the first pass. On the second pass, the macro
1254 definition is simply ignored. Macros must be defined before they are used.</P
1255 ><P
1256 >The following directives are used when defining macros.</P
1257 ><P
1258 ></P
1259 ><DIV
1260 CLASS="VARIABLELIST"
1261 ><DL
1262 ><DT
1263 ><CODE
1264 CLASS="PARAMETER"
1265 >macroname</CODE
1266 > MACRO</DT
1267 ><DD
1268 ><P
1269 >This directive is used to being the definition of a macro called
1270 <CODE
1271 CLASS="PARAMETER"
1272 >macroname</CODE
1273 >. If <CODE
1274 CLASS="PARAMETER"
1275 >macroname</CODE
1276 > already
1277 exists, it is considered an error. Attempting to define a macro within a
1278 macro is undefined. It may work and it may not so the behaviour should not
1279 be relied upon.</P
1280 ></DD
1281 ><DT
1282 >ENDM</DT
1283 ><DD
1284 ><P
1285 >This directive indicates the end of the macro currently being defined. It
1286 causes the assembler to resume interpreting source lines as normal.</P
1287 ></DD
1288 ></DL
1289 ></DIV
1290 ></DIV
1291 ><DIV
1292 CLASS="SECTION"
1293 ><HR><H2
1294 CLASS="SECTION"
1295 ><A
1296 NAME="AEN400"
1297 >3.8. Object Files and Sections</A
1298 ></H2
1299 ><P
1300 >The object file target is very useful for large project because it allows
1301 multiple files to be assembled independently and then linked into the final
1302 binary at a later time. It allows only the small portion of the project
1303 that was modified to be re-assembled rather than requiring the entire set
1304 of source code to be available to the assembler in a single assembly process.
1305 This can be particularly important if there are a large number of macros,
1306 symbol definitions, or other metadata that uses resources at assembly time.
1307 By far the largest benefit, however, is keeping the source files small enough
1308 for a mere mortal to find things in them.</P
1309 ><P
1310 >With multi-file projects, there needs to be a means of resolving references to
1311 symbols in other source files. These are known as external references. The
1312 addresses of these symbols cannot be known until the linker joins all the
1313 object files into a single binary. This means that the assembler must be
1314 able to output the object code without knowing the value of the symbol. This
1315 places some restrictions on the code generated by the assembler. For
1316 example, the assembler cannot generate direct page addressing for instructions
1317 that reference external symbols because the address of the symbol may not
1318 be in the direct page. Similarly, relative branches and PC relative addressing
1319 cannot be used in their eight bit forms. Everything that must be resolved
1320 by the linker must be assembled to use the largest address size possible to
1321 allow the linker to fill in the correct value at link time. Note that the
1322 same problem applies to absolute address references as well, even those in
1323 the same source file, because the address is not known until link time.</P
1324 ><P
1325 >It is often desired in multi-file projects to have code of various types grouped
1326 together in the final binary generated by the linker as well. The same applies
1327 to data. In order for the linker to do that, the bits that are to be grouped
1328 must be tagged in some manner. This is where the concept of sections comes in.
1329 Each chunk of code or data is part of a section in the object file. Then,
1330 when the linker reads all the object files, it coalesces all sections of the
1331 same name into a single section and then considers it as a unit.</P
1332 ><P
1333 >The existence of sections, however, raises a problem for symbols even
1334 within the same source file. Thus, the assembler must treat symbols from
1335 different sections within the same source file in the same manner as external
1336 symbols. That is, it must leave them for the linker to resolve at link time,
1337 with all the limitations that entails.</P
1338 ><P
1339 >In the object file target mode, LWASM requires all source lines that
1340 cause bytes to be output to be inside a section. Any directives that do
1341 not cause any bytes to be output can appear outside of a section. This includes
1342 such things as EQU or RMB. Even ORG can appear outside a section. ORG, however,
1343 makes no sense within a section because it is the linker that determines
1344 the starting address of the section's code, not the assembler.</P
1345 ><P
1346 >All symbols defined globally in the assembly process are local to the
1347 source file and cannot be exported. All symbols defined within a section are
1348 considered local to the source file unless otherwise explicitly exported.
1349 Symbols referenced from external source files must be declared external,
1350 either explicitly or by asking the assembler to assume that all undefined
1351 symbols are external.</P
1352 ><P
1353 >It is often handy to define a number of memory addresses that will be
1354 used for data at run-time but which need not be included in the binary file.
1355 These memory addresses are not initialized until run-time, either by the
1356 program itself or by the program loader, depending on the operating environment.
1357 Such sections are often known as BSS sections. LWASM supports generating
1358 sections with a BSS attribute set which causes the section definition including
1359 symbols exported from that section and those symbols required to resolve
1360 references from the local file, but with no actual code in the object file.
1361 It is illegal for any source lines within a BSS flagged section to cause any
1362 bytes to be output.</P
1363 ><P
1364 >The following directives apply to section handling.</P
1365 ><P
1366 ></P
1367 ><DIV
1368 CLASS="VARIABLELIST"
1369 ><DL
1370 ><DT
1371 >SECTION <CODE
1372 CLASS="PARAMETER"
1373 >name[,flags]</CODE
1374 >, SECT <CODE
1375 CLASS="PARAMETER"
1376 >name[,flags]</CODE
1377 >, .AREA <CODE
1378 CLASS="PARAMETER"
1379 >name[,flags]</CODE
1380 ></DT
1381 ><DD
1382 ><P
1383 >Instructs the assembler that the code following this directive is to be
1384 considered part of the section <CODE
1385 CLASS="PARAMETER"
1386 >name</CODE
1387 >. A section name
1388 may appear multiple times in which case it is as though all the code from
1389 all the instances of that section appeared adjacent within the source file.
1390 However, <CODE
1391 CLASS="PARAMETER"
1392 >flags</CODE
1393 > may only be specified on the first
1394 instance of the section.</P
1395 ><P
1396 >There is a single flag supported in <CODE
1397 CLASS="PARAMETER"
1398 >flags</CODE
1399 >. The
1400 flag <CODE
1401 CLASS="PARAMETER"
1402 >bss</CODE
1403 > will cause the section to be treated as a BSS
1404 section and, thus, no code will be included in the object file nor will any
1405 bytes be permitted to be output.</P
1406 ><P
1407 >If the section name is "bss" or ".bss" in any combination of upper and
1408 lower case, the section is assumed to be a BSS section. In that case,
1409 the flag <CODE
1410 CLASS="PARAMETER"
1411 >!bss</CODE
1412 > can be used to override this assumption.</P
1413 ><P
1414 >If assembly is already happening within a section, the section is implicitly
1415 ended and the new section started. This is not considered an error although
1416 it is recommended that all sections be explicitly closed.</P
1417 ></DD
1418 ><DT
1419 >ENDSECTION, ENDSECT, ENDS</DT
1420 ><DD
1421 ><P
1422 >This directive ends the current section. This puts assembly outside of any
1423 sections until the next SECTION directive.</P
1424 ></DD
1425 ><DT
1426 ><CODE
1427 CLASS="PARAMETER"
1428 >sym</CODE
1429 > EXTERN, <CODE
1430 CLASS="PARAMETER"
1431 >sym</CODE
1432 > EXTERNAL, <CODE
1433 CLASS="PARAMETER"
1434 >sym</CODE
1435 > IMPORT</DT
1436 ><DD
1437 ><P
1438 >This directive defines <CODE
1439 CLASS="PARAMETER"
1440 >sym</CODE
1441 > as an external symbol.
1442 This directive may occur at any point in the source code. EXTERN definitions
1443 are resolved on the first pass so an EXTERN definition anywhere in the
1444 source file is valid for the entire file. The use of this directive is
1445 optional when the assembler is instructed to assume that all undefined
1446 symbols are external. In fact, in that mode, if the symbol is referenced
1447 before the EXTERN directive, an error will occur.</P
1448 ></DD
1449 ><DT
1450 ><CODE
1451 CLASS="PARAMETER"
1452 >sym</CODE
1453 > EXPORT, <CODE
1454 CLASS="PARAMETER"
1455 >sym</CODE
1456 > .GLOBL, EXPORT <CODE
1457 CLASS="PARAMETER"
1458 >sym</CODE
1459 >, .GLOBL <CODE
1460 CLASS="PARAMETER"
1461 >sym</CODE
1462 ></DT
1463 ><DD
1464 ><P
1465 >This directive defines <CODE
1466 CLASS="PARAMETER"
1467 >sym</CODE
1468 > as an exported symbol.
1469 This directive may occur at any point in the source code, even before the
1470 definition of the exported symbol.</P
1471 ><P
1472 >Note that <CODE
1473 CLASS="PARAMETER"
1474 >sym</CODE
1475 > may appear as the operand or as the
1476 statement's symbol. If there is a symbol on the statement, that will
1477 take precedence over any operand that is present.</P
1478 ></DD
1479 ></DL
1480 ></DIV
1481 ></DIV
1482 ><DIV
1483 CLASS="SECTION"
1484 ><HR><H2
1485 CLASS="SECTION"
1486 ><A
1487 NAME="AEN458"
1488 >3.9. Assembler Modes and Pragmas</A
1489 ></H2
1490 ><P
1491 >There are a number of options that affect the way assembly is performed.
1492 Some of these options can only be specified on the command line because
1493 they determine something absolute about the assembly process. These include
1494 such things as the output target. Other things may be switchable during
1495 the assembly process. These are known as pragmas and are, by definition,
1496 not portable between assemblers.</P
1497 ><P
1498 >LWASM supports a number of pragmas that affect code generation or
1499 otherwise affect the behaviour of the assembler. These may be specified by
1500 way of a command line option or by assembler directives. The directives
1501 are as follows.</P
1502 ><P
1503 ></P
1504 ><DIV
1505 CLASS="VARIABLELIST"
1506 ><DL
1507 ><DT
1508 >PRAGMA <CODE
1509 CLASS="PARAMETER"
1510 >pragma[,...]</CODE
1511 ></DT
1512 ><DD
1513 ><P
1514 >Specifies that the assembler should bring into force all <CODE
1515 CLASS="PARAMETER"
1516 >pragma</CODE
1517 >s
1518 specified. Any unrecognized pragma will cause an assembly error. The new
1519 pragmas will take effect immediately. This directive should be used when
1520 the program will assemble incorrectly if the pragma is ignored or not supported.</P
1521 ></DD
1522 ><DT
1523 >*PRAGMA <CODE
1524 CLASS="PARAMETER"
1525 >pragma[,...]</CODE
1526 ></DT
1527 ><DD
1528 ><P
1529 >This is identical to the PRAGMA directive except no error will occur with
1530 unrecognized or unsupported pragmas. This directive, by virtue of starting
1531 with a comment character, will also be ignored by assemblers that do not
1532 support this directive. Use this variation if the pragma is not required
1533 for correct functioning of the code.</P
1534 ></DD
1535 ></DL
1536 ></DIV
1537 ><P
1538 >Each pragma supported has a positive version and a negative version.
1539 The positive version enables the pragma while the negative version disables
1540 it. The negatitve version is simply the positive version with "no" prefixed
1541 to it. For instance, "pragma" vs. "nopragma". Only the positive version is
1542 listed below.</P
1543 ><P
1544 >Pragmas are not case sensitive.</P
1545 ><P
1546 ></P
1547 ><DIV
1548 CLASS="VARIABLELIST"
1549 ><DL
1550 ><DT
1551 >index0tonone</DT
1552 ><DD
1553 ><P
1554 >When in force, this pragma enables an optimization affecting indexed addressing
1555 modes. When the offset expression in an indexed mode evaluates to zero but is
1556 not explicity written as 0, this will replace the operand with the equivalent
1557 no offset mode, thus creating slightly faster code. Because of the advantages
1558 of this optimization, it is enabled by default.</P
1559 ></DD
1560 ><DT
1561 >cescapes</DT
1562 ><DD
1563 ><P
1564 >This pragma will cause strings in the FCC, FCS, and FCN pseudo operations to
1565 have C-style escape sequences interpreted. The one departure from the official
1566 spec is that unrecognized escape sequences will return either the character
1567 immediately following the backslash or some undefined value. Do not rely
1568 on the behaviour of undefined escape sequences.</P
1569 ></DD
1570 ><DT
1571 >undefextern</DT
1572 ><DD
1573 ><P
1574 >This pragma is only valid for targets that support external references. When in
1575 force, if the assembler sees an undefined symbol on the second pass, it will
1576 automatically define it as an external symbol. This automatic definition will
1577 apply for the remainder of the assembly process, even if the pragma is
1578 subsequently turned off. Because this behaviour would be potentially surprising,
1579 this pragma defaults to off.</P
1580 ><P
1581 >The primary use for this pragma is for projects that share a large number of
1582 symbols between source files. In such cases, it is impractical to enumerate
1583 all the external references in every source file. This allows the assembler
1584 and linker to do the heavy lifting while not preventing a particular source
1585 module from defining a local symbol of the same name as an external symbol
1586 if it does not need the external symbol. (This pragma will not cause an
1587 automatic external definition if there is already a locally defined symbol.)</P
1588 ><P
1589 >This pragma will often be specified on the command line for large projects.
1590 However, depending on the specific dynamics of the project, it may be sufficient
1591 for one or two files to use this pragma internally.</P
1592 ></DD
1593 ></DL
1594 ></DIV
1595 ></DIV
1596 ></DIV
1597 ><DIV
1598 CLASS="CHAPTER"
1599 ><HR><H1
1600 ><A
1601 NAME="AEN491"
1602 ></A
1603 >Chapter 4. LWLINK</H1
1604 ><P
1605 >The LWTOOLS linker is called LWLINK. This chapter documents the various features
1606 of the linker.</P
1607 ><DIV
1608 CLASS="SECTION"
1609 ><HR><H2
1610 CLASS="SECTION"
1611 ><A
1612 NAME="AEN494"
1613 >4.1. Command Line Options</A
1614 ></H2
1615 ><P
1616 >The binary for LWLINK is called "lwlink". Note that the binary is in lower
1617 case. lwlink takes the following command line arguments.</P
1618 ><P
1619 ></P
1620 ><DIV
1621 CLASS="VARIABLELIST"
1622 ><DL
1623 ><DT
1624 ><CODE
1625 CLASS="OPTION"
1626 >--decb</CODE
1627 >, <CODE
1628 CLASS="OPTION"
1629 >-b</CODE
1630 ></DT
1631 ><DD
1632 ><P
1633 >Selects the DECB output format target. This is equivalent to <CODE
1634 CLASS="OPTION"
1635 >--format=decb</CODE
1636 ></P
1637 ></DD
1638 ><DT
1639 ><CODE
1640 CLASS="OPTION"
1641 >--output=FILE</CODE
1642 >, <CODE
1643 CLASS="OPTION"
1644 >-o FILE</CODE
1645 ></DT
1646 ><DD
1647 ><P
1648 >This option specifies the name of the output file. If not specified, the
1649 default is <CODE
1650 CLASS="OPTION"
1651 >a.out</CODE
1652 >.</P
1653 ></DD
1654 ><DT
1655 ><CODE
1656 CLASS="OPTION"
1657 >--format=TYPE</CODE
1658 >, <CODE
1659 CLASS="OPTION"
1660 >-f TYPE</CODE
1661 ></DT
1662 ><DD
1663 ><P
1664 >This option specifies the output format. Valid values are <CODE
1665 CLASS="OPTION"
1666 >decb</CODE
1667 >
1668 and <CODE
1669 CLASS="OPTION"
1670 >raw</CODE
1671 ></P
1672 ></DD
1673 ><DT
1674 ><CODE
1675 CLASS="OPTION"
1676 >--raw</CODE
1677 >, <CODE
1678 CLASS="OPTION"
1679 >-r</CODE
1680 ></DT
1681 ><DD
1682 ><P
1683 >This option specifies the raw output format.
1684 It is equivalent to <CODE
1685 CLASS="OPTION"
1686 >--format=raw</CODE
1687 >.
1688 and <CODE
1689 CLASS="OPTION"
1690 >raw</CODE
1691 ></P
1692 ></DD
1693 ><DT
1694 ><CODE
1695 CLASS="OPTION"
1696 >--script=FILE</CODE
1697 >, <CODE
1698 CLASS="OPTION"
1699 >-s</CODE
1700 ></DT
1701 ><DD
1702 ><P
1703 >This option allows specifying a linking script to override the linker's
1704 built in defaults.</P
1705 ></DD
1706 ><DT
1707 ><CODE
1708 CLASS="OPTION"
1709 >--section-base=SECT=BASE</CODE
1710 ></DT
1711 ><DD
1712 ><P
1713 >Cause section SECT to load at base address BASE. This will be prepended
1714 to the built-in link script. It is ignored if a link script is provided.</P
1715 ></DD
1716 ><DT
1717 ><CODE
1718 CLASS="OPTION"
1719 >--map=FILE</CODE
1720 >, <CODE
1721 CLASS="OPTION"
1722 >-m FILE</CODE
1723 ></DT
1724 ><DD
1725 ><P
1726 >This will output a description of the link result to FILE.</P
1727 ></DD
1728 ><DT
1729 ><CODE
1730 CLASS="OPTION"
1731 >--library=LIBSPEC</CODE
1732 >, <CODE
1733 CLASS="OPTION"
1734 >-l LIBSPEC</CODE
1735 ></DT
1736 ><DD
1737 ><P
1738 >Load a library using the library search path. LIBSPEC will have "lib" prepended
1739 and ".a" appended.</P
1740 ></DD
1741 ><DT
1742 ><CODE
1743 CLASS="OPTION"
1744 >--library-path=DIR</CODE
1745 >, <CODE
1746 CLASS="OPTION"
1747 >-L DIR</CODE
1748 ></DT
1749 ><DD
1750 ><P
1751 >Add DIR to the library search path.</P
1752 ></DD
1753 ><DT
1754 ><CODE
1755 CLASS="OPTION"
1756 >--debug</CODE
1757 >, <CODE
1758 CLASS="OPTION"
1759 >-d</CODE
1760 ></DT
1761 ><DD
1762 ><P
1763 >This option increases the debugging level. It is only useful for LWTOOLS
1764 developers.</P
1765 ></DD
1766 ><DT
1767 ><CODE
1768 CLASS="OPTION"
1769 >--help</CODE
1770 >, <CODE
1771 CLASS="OPTION"
1772 >-?</CODE
1773 ></DT
1774 ><DD
1775 ><P
1776 >This provides a listing of command line options and a brief description
1777 of each.</P
1778 ></DD
1779 ><DT
1780 ><CODE
1781 CLASS="OPTION"
1782 >--usage</CODE
1783 ></DT
1784 ><DD
1785 ><P
1786 >This will display a usage summary.
1787 of each.</P
1788 ></DD
1789 ><DT
1790 ><CODE
1791 CLASS="OPTION"
1792 >--version</CODE
1793 >, <CODE
1794 CLASS="OPTION"
1795 >-V</CODE
1796 ></DT
1797 ><DD
1798 ><P
1799 >This will display the version of LWLINK.</P
1800 ></DD
1801 ></DL
1802 ></DIV
1803 ></DIV
1804 ><DIV
1805 CLASS="SECTION"
1806 ><HR><H2
1807 CLASS="SECTION"
1808 ><A
1809 NAME="AEN591"
1810 >4.2. Linker Operation</A
1811 ></H2
1812 ><P
1813 >&#13;LWLINK takes one or more files in supported input formats and links them
1814 into a single binary. Currently supported formats are the LWTOOLS object
1815 file format and the archive format used by LWAR. While the precise method is
1816 slightly different, linking can be conceptualized as the following steps.&#13;</P
1817 ><P
1818 ></P
1819 ><OL
1820 TYPE="1"
1821 ><LI
1822 ><P
1823 >First, the linker loads a linking script. If no script is specified, it
1824 loads a built-in default script based on the output format selected. This
1825 script tells the linker how to lay out the various sections in the final
1826 binary.</P
1827 ></LI
1828 ><LI
1829 ><P
1830 >Next, the linker reads all the input files into memory. At this time, it
1831 flags any format errors in those files. It constructs a table of symbols
1832 for each object at this time.</P
1833 ></LI
1834 ><LI
1835 ><P
1836 >The linker then proceeds with organizing the sections loaded from each file
1837 according to the linking script. As it does so, it is able to assign addresses
1838 to each symbol defined in each object file. At this time, the linker may
1839 also collapse different instances of the same section name into a single
1840 section by appending the data from each subsequent instance of the section
1841 to the first instance of the section.</P
1842 ></LI
1843 ><LI
1844 ><P
1845 >Next, the linker looks through every object file for every incomplete reference.
1846 It then attempts to fully resolve that reference. If it cannot do so, it
1847 throws an error. Once a reference is resolved, the value is placed into
1848 the binary code at the specified section. It should be noted that an
1849 incomplete reference can reference either a symbol internal to the object
1850 file or an external symbol which is in the export list of another object
1851 file.</P
1852 ></LI
1853 ><LI
1854 ><P
1855 >If all of the above steps are successful, the linker opens the output file
1856 and actually constructs the binary.</P
1857 ></LI
1858 ></OL
1859 ></DIV
1860 ><DIV
1861 CLASS="SECTION"
1862 ><HR><H2
1863 CLASS="SECTION"
1864 ><A
1865 NAME="AEN605"
1866 >4.3. Linking Scripts</A
1867 ></H2
1868 ><P
1869 >A linker script is used to instruct the linker about how to assemble the
1870 various sections into a completed binary. It consists of a series of
1871 directives which are considered in the order they are encountered.</P
1872 ><P
1873 >The sections will appear in the resulting binary in the order they are
1874 specified in the script file. If a referenced section is not found, the linker will behave as though the
1875 section did exist but had a zero size, no relocations, and no exports.
1876 A section should only be referenced once. Any subsequent references will have
1877 an undefined effect.</P
1878 ><P
1879 >All numbers are in linking scripts are specified in hexadecimal. All directives
1880 are case sensitive although the hexadecimal numbers are not.</P
1881 ><P
1882 >A section name can be specified as a "*", then any section not
1883 already matched by the script will be matched. The "*" can be followed
1884 by a comma and a flag to narrow the section down slightly, also.
1885 If the flag is "!bss", then any section that is not flagged as a bss section
1886 will be matched. If the flag is "bss", then any section that is flagged as
1887 bss will be matched.</P
1888 ><P
1889 >The following directives are understood in a linker script.</P
1890 ><P
1891 ></P
1892 ><DIV
1893 CLASS="VARIABLELIST"
1894 ><DL
1895 ><DT
1896 >section <CODE
1897 CLASS="PARAMETER"
1898 >name</CODE
1899 > load <CODE
1900 CLASS="PARAMETER"
1901 >addr</CODE
1902 ></DT
1903 ><DD
1904 ><P
1905 >&#13;This causes the section <CODE
1906 CLASS="PARAMETER"
1907 >name</CODE
1908 > to load at
1909 <CODE
1910 CLASS="PARAMETER"
1911 >addr</CODE
1912 >. For the raw target, only one "load at" entry is
1913 allowed for non-bss sections and it must be the first one. For raw targets,
1914 it affects the addresses the linker assigns to symbols but has no other
1915 affect on the output. bss sections may all have separate load addresses but
1916 since they will not appear in the binary anyway, this is okay.</P
1917 ><P
1918 >For the decb target, each "load" entry will cause a new "block" to be
1919 output to the binary which will contain the load address. It is legal for
1920 sections to overlap in this manner - the linker assumes the loader will sort
1921 everything out.</P
1922 ></DD
1923 ><DT
1924 >section <CODE
1925 CLASS="PARAMETER"
1926 >name</CODE
1927 ></DT
1928 ><DD
1929 ><P
1930 >&#13;This will cause the section <CODE
1931 CLASS="PARAMETER"
1932 >name</CODE
1933 > to load after the previously listed
1934 section.</P
1935 ></DD
1936 ><DT
1937 >exec <CODE
1938 CLASS="PARAMETER"
1939 >addr or sym</CODE
1940 ></DT
1941 ><DD
1942 ><P
1943 >This will cause the execution address (entry point) to be the address
1944 specified (in hex) or the specified symbol name. The symbol name must
1945 match a symbol that is exported by one of the object files being linked.
1946 This has no effect for targets that do not encode the entry point into the
1947 resulting file. If not specified, the entry point is assumed to be address 0
1948 which is probably not what you want. The default link scripts for targets
1949 that support this directive automatically starts at the beginning of the
1950 first section (usually "init" or "code") that is emitted in the binary.</P
1951 ></DD
1952 ><DT
1953 >pad <CODE
1954 CLASS="PARAMETER"
1955 >size</CODE
1956 ></DT
1957 ><DD
1958 ><P
1959 >This will cause the output file to be padded with NUL bytes to be exactly
1960 <CODE
1961 CLASS="PARAMETER"
1962 >size</CODE
1963 > bytes in length. This only makes sense for a raw target.</P
1964 ></DD
1965 ></DL
1966 ></DIV
1967 ></DIV
1968 ></DIV
1969 ><DIV
1970 CLASS="CHAPTER"
1971 ><HR><H1
1972 ><A
1973 NAME="AEN639"
1974 ></A
1975 >Chapter 5. Libraries and LWAR</H1
1976 ><P
1977 >LWTOOLS also includes a tool for managing libraries. These are analogous to
1978 the static libraries created with the "ar" tool on POSIX systems. Each library
1979 file contains one or more object files. The linker will treat the object
1980 files within a library as though they had been specified individually on
1981 the command line except when resolving external references. External references
1982 are looked up first within the object files within the library and then, if
1983 not found, the usual lookup based on the order the files are specified on
1984 the command line occurs.</P
1985 ><P
1986 >The tool for creating these libary files is called LWAR.</P
1987 ><DIV
1988 CLASS="SECTION"
1989 ><HR><H2
1990 CLASS="SECTION"
1991 ><A
1992 NAME="AEN643"
1993 >5.1. Command Line Options</A
1994 ></H2
1995 ><P
1996 >The binary for LWAR is called "lwar". Note that the binary is in lower
1997 case. The options lwar understands are listed below. For archive manipulation
1998 options, the first non-option argument is the name of the archive. All other
1999 non-option arguments are the names of files to operate on.</P
2000 ><P
2001 ></P
2002 ><DIV
2003 CLASS="VARIABLELIST"
2004 ><DL
2005 ><DT
2006 ><CODE
2007 CLASS="OPTION"
2008 >--add</CODE
2009 >, <CODE
2010 CLASS="OPTION"
2011 >-a</CODE
2012 ></DT
2013 ><DD
2014 ><P
2015 >This option specifies that an archive is going to have files added to it.
2016 If the archive does not already exist, it is created. New files are added
2017 to the end of the archive.</P
2018 ></DD
2019 ><DT
2020 ><CODE
2021 CLASS="OPTION"
2022 >--create</CODE
2023 >, <CODE
2024 CLASS="OPTION"
2025 >-c</CODE
2026 ></DT
2027 ><DD
2028 ><P
2029 >This option specifies that an archive is going to be created and have files
2030 added to it. If the archive already exists, it is truncated.</P
2031 ></DD
2032 ><DT
2033 ><CODE
2034 CLASS="OPTION"
2035 >--merge</CODE
2036 >, <CODE
2037 CLASS="OPTION"
2038 >-m</CODE
2039 ></DT
2040 ><DD
2041 ><P
2042 >If specified, any files specified to be added to an archive will be checked
2043 to see if they are archives themselves. If so, their constituent members are
2044 added to the archive. This is useful for avoiding archives containing archives.</P
2045 ></DD
2046 ><DT
2047 ><CODE
2048 CLASS="OPTION"
2049 >--list</CODE
2050 >, <CODE
2051 CLASS="OPTION"
2052 >-l</CODE
2053 ></DT
2054 ><DD
2055 ><P
2056 >This will display a list of the files contained in the archive.</P
2057 ></DD
2058 ><DT
2059 ><CODE
2060 CLASS="OPTION"
2061 >--debug</CODE
2062 >, <CODE
2063 CLASS="OPTION"
2064 >-d</CODE
2065 ></DT
2066 ><DD
2067 ><P
2068 >This option increases the debugging level. It is only useful for LWTOOLS
2069 developers.</P
2070 ></DD
2071 ><DT
2072 ><CODE
2073 CLASS="OPTION"
2074 >--help</CODE
2075 >, <CODE
2076 CLASS="OPTION"
2077 >-?</CODE
2078 ></DT
2079 ><DD
2080 ><P
2081 >This provides a listing of command line options and a brief description
2082 of each.</P
2083 ></DD
2084 ><DT
2085 ><CODE
2086 CLASS="OPTION"
2087 >--usage</CODE
2088 ></DT
2089 ><DD
2090 ><P
2091 >This will display a usage summary.
2092 of each.</P
2093 ></DD
2094 ><DT
2095 ><CODE
2096 CLASS="OPTION"
2097 >--version</CODE
2098 >, <CODE
2099 CLASS="OPTION"
2100 >-V</CODE
2101 ></DT
2102 ><DD
2103 ><P
2104 >This will display the version of LWLINK.
2105 of each.</P
2106 ></DD
2107 ></DL
2108 ></DIV
2109 ></DIV
2110 ></DIV
2111 ><DIV
2112 CLASS="CHAPTER"
2113 ><HR><H1
2114 ><A
2115 NAME="OBJCHAP"
2116 ></A
2117 >Chapter 6. Object Files</H1
2118 ><P
2119 >LWTOOLS uses a proprietary object file format. It is proprietary in the sense
2120 that it is specific to LWTOOLS, not that it is a hidden format. It would be
2121 hard to keep it hidden in an open source tool chain anyway. This chapter
2122 documents the object file format.</P
2123 ><P
2124 >An object file consists of a series of sections each of which contains a
2125 list of exported symbols, a list of incomplete references, and a list of
2126 "local" symbols which may be used in calculating incomplete references. Each
2127 section will obviously also contain the object code.</P
2128 ><P
2129 >Exported symbols must be completely resolved to an address within the
2130 section it is exported from. That is, an exported symbol must be a constant
2131 rather than defined in terms of other symbols.</P
2132 ><P
2133 >Each object file starts with a magic number and version number. The magic
2134 number is the string "LWOBJ16" for this 16 bit object file format. The only
2135 defined version number is currently 0. Thus, the first 8 bytes of the object
2136 file are <FONT
2137 COLOR="RED"
2138 >4C574F424A313600</FONT
2139 ></P
2140 ><P
2141 >Each section has the following items in order:</P
2142 ><P
2143 ></P
2144 ><UL
2145 ><LI
2146 ><P
2147 >section name</P
2148 ></LI
2149 ><LI
2150 ><P
2151 >flags</P
2152 ></LI
2153 ><LI
2154 ><P
2155 >list of local symbols (and addresses within the section)</P
2156 ></LI
2157 ><LI
2158 ><P
2159 >list of exported symbols (and addresses within the section)</P
2160 ></LI
2161 ><LI
2162 ><P
2163 >list of incomplete references along with the expressions to calculate them</P
2164 ></LI
2165 ><LI
2166 ><P
2167 >the actual object code (for non-BSS sections)</P
2168 ></LI
2169 ></UL
2170 ><P
2171 >The section starts with the name of the section with a NUL termination
2172 followed by a series of flag bytes terminated by NUL. There are only two
2173 flag bytes defined. A NUL (0) indicates no more flags and a value of 1
2174 indicates the section is a BSS section. For a BSS section, no actual
2175 code is included in the object file.</P
2176 ><P
2177 >Either a NULL section name or end of file indicate the presence of no more
2178 sections.</P
2179 ><P
2180 >Each entry in the exported and local symbols table consists of the symbol
2181 (NUL terminated) followed by two bytes which contain the value in big endian
2182 order. The end of a symbol table is indicated by a NULL symbol name.</P
2183 ><P
2184 >Each entry in the incomplete references table consists of an expression
2185 followed by a 16 bit offset where the reference goes. Expressions are
2186 defined as a series of terms up to an "end of expression" term. Each term
2187 consists of a single byte which identifies the type of term (see below)
2188 followed by any data required by the term. Then end of the list is flagged
2189 by a NULL expression (only an end of expression term).</P
2190 ><DIV
2191 CLASS="TABLE"
2192 ><A
2193 NAME="AEN726"
2194 ></A
2195 ><P
2196 ><B
2197 >Table 6-1. Object File Term Types</B
2198 ></P
2199 ><TABLE
2200 BORDER="1"
2201 FRAME="border"
2202 CLASS="CALSTABLE"
2203 ><COL><COL><THEAD
2204 ><TR
2205 ><TH
2206 >TERMTYPE</TH
2207 ><TH
2208 >Meaning</TH
2209 ></TR
2210 ></THEAD
2211 ><TBODY
2212 ><TR
2213 ><TD
2214 >00</TD
2215 ><TD
2216 >end of expression</TD
2217 ></TR
2218 ><TR
2219 ><TD
2220 >01</TD
2221 ><TD
2222 >integer (16 bit in big endian order follows)</TD
2223 ></TR
2224 ><TR
2225 ><TD
2226 >02</TD
2227 ><TD
2228 > external symbol reference (NUL terminated symbol name follows)</TD
2229 ></TR
2230 ><TR
2231 ><TD
2232 >03</TD
2233 ><TD
2234 >local symbol reference (NUL terminated symbol name follows)</TD
2235 ></TR
2236 ><TR
2237 ><TD
2238 >04</TD
2239 ><TD
2240 >operator (1 byte operator number)</TD
2241 ></TR
2242 ><TR
2243 ><TD
2244 >05</TD
2245 ><TD
2246 >section base address reference</TD
2247 ></TR
2248 ></TBODY
2249 ></TABLE
2250 ></DIV
2251 ><P
2252 >External references are resolved using other object files while local
2253 references are resolved using the local symbol table(s) from this file. This
2254 allows local symbols that are not exported to have the same names as
2255 exported symbols or external references.</P
2256 ><DIV
2257 CLASS="TABLE"
2258 ><A
2259 NAME="AEN753"
2260 ></A
2261 ><P
2262 ><B
2263 >Table 6-2. Object File Operator Numbers</B
2264 ></P
2265 ><TABLE
2266 BORDER="1"
2267 FRAME="border"
2268 CLASS="CALSTABLE"
2269 ><COL><COL><THEAD
2270 ><TR
2271 ><TH
2272 >Number</TH
2273 ><TH
2274 >Operator</TH
2275 ></TR
2276 ></THEAD
2277 ><TBODY
2278 ><TR
2279 ><TD
2280 >01</TD
2281 ><TD
2282 >addition (+)</TD
2283 ></TR
2284 ><TR
2285 ><TD
2286 >02</TD
2287 ><TD
2288 >subtraction (-)</TD
2289 ></TR
2290 ><TR
2291 ><TD
2292 >03</TD
2293 ><TD
2294 >multiplication (*)</TD
2295 ></TR
2296 ><TR
2297 ><TD
2298 >04</TD
2299 ><TD
2300 >division (/)</TD
2301 ></TR
2302 ><TR
2303 ><TD
2304 >05</TD
2305 ><TD
2306 >modulus (%)</TD
2307 ></TR
2308 ><TR
2309 ><TD
2310 >06</TD
2311 ><TD
2312 >integer division (\) (same as division)</TD
2313 ></TR
2314 ><TR
2315 ><TD
2316 >07</TD
2317 ><TD
2318 >bitwise and</TD
2319 ></TR
2320 ><TR
2321 ><TD
2322 >08</TD
2323 ><TD
2324 >bitwise or</TD
2325 ></TR
2326 ><TR
2327 ><TD
2328 >09</TD
2329 ><TD
2330 >bitwise xor</TD
2331 ></TR
2332 ><TR
2333 ><TD
2334 >0A</TD
2335 ><TD
2336 >boolean and</TD
2337 ></TR
2338 ><TR
2339 ><TD
2340 >0B</TD
2341 ><TD
2342 >boolean or</TD
2343 ></TR
2344 ><TR
2345 ><TD
2346 >0C</TD
2347 ><TD
2348 >unary negation, 2's complement (-)</TD
2349 ></TR
2350 ><TR
2351 ><TD
2352 >0D</TD
2353 ><TD
2354 >unary 1's complement (^)</TD
2355 ></TR
2356 ></TBODY
2357 ></TABLE
2358 ></DIV
2359 ><P
2360 >An expression is represented in a postfix manner with both operands for
2361 binary operators preceding the operator and the single operand for unary
2362 operators preceding the operator.</P
2363 ></DIV
2364 ></DIV
2365 ></BODY
2366 ></HTML
2367 >